### **Compound Angle Formulae Exam Questions (From OCR 4723)**

#### Q1, (Jan 2009, Q9)

(i) By first expanding  $cos(2\theta + \theta)$ , prove that

$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta.$$
 [4]

(ii) Hence prove that

$$\cos 6\theta = 32\cos^6 \theta - 48\cos^4 \theta + 18\cos^2 \theta - 1.$$
 [3]

(iii) Show that the only solutions of the equation

$$1 + \cos 6\theta = 18\cos^2 \theta$$

are odd multiples of 90°.

[5]

### Q2, (Jan 2010, Q9)

The value of  $\tan 10^{\circ}$  is denoted by p. Find, in terms of p, the value of

(i) 
$$\tan 55^{\circ}$$
, [3]

(ii) 
$$\tan 5^{\circ}$$
, [4]

(iii) 
$$\tan \theta$$
, where  $\theta$  satisfies the equation  $3\sin(\theta + 10^\circ) = 7\cos(\theta - 10^\circ)$ . [5]

#### Q3, (Jun 2011, Q9)

(i) Prove that 
$$\frac{\sin(\theta - \alpha) + 3\sin\theta + \sin(\theta + \alpha)}{\cos(\theta - \alpha) + 3\cos\theta + \cos(\theta + \alpha)} \equiv \tan\theta \text{ for all values of } \alpha.$$
 [5]

(ii) Find the exact value of 
$$\frac{4\sin 149^\circ + 12\sin 150^\circ + 4\sin 151^\circ}{3\cos 149^\circ + 9\cos 150^\circ + 3\cos 151^\circ}.$$
 [3]

(iii) It is given that k is a positive constant. Solve, for  $0^{\circ} < \theta < 60^{\circ}$  and in terms of k, the equation

$$\frac{\sin(6\theta - 15^{\circ}) + 3\sin 6\theta + \sin(6\theta + 15^{\circ})}{\cos(6\theta - 15^{\circ}) + 3\cos 6\theta + \cos(6\theta + 15^{\circ})} = k.$$
 [4]

### Q4, (Jan 2013, Q9)

(i) Prove that

$$\cos^2(\theta + 45^\circ) - \frac{1}{2}(\cos 2\theta - \sin 2\theta) \equiv \sin^2\theta.$$
 [4]

(ii) Hence solve the equation

$$6\cos^{2}(\frac{1}{2}\theta + 45^{\circ}) - 3(\cos\theta - \sin\theta) = 2$$
 for  $-90^{\circ} < \theta < 90^{\circ}$ . [3]

(iii) It is given that there are two values of  $\theta$ , where  $-90^{\circ} < \theta < 90^{\circ}$ , satisfying the equation

$$6\cos^2(\frac{1}{3}\theta + 45^\circ) - 3(\cos\frac{2}{3}\theta - \sin\frac{2}{3}\theta) = k$$

where k is a constant. Find the set of possible values of k.

[3]

### Q5, (Jun 2015, Q9)

It is given that  $f(\theta) = \sin(\theta + 30^\circ) + \cos(\theta + 60^\circ)$ .

(i) Show that  $f(\theta) = \cos \theta$ . Hence show that

$$f(4\theta) + 4f(2\theta) \equiv 8\cos^4\theta - 3.$$
 [6]

(ii) Hence

(a) determine the greatest and least values of 
$$\frac{1}{f(4\theta) + 4f(2\theta) + 7}$$
 as  $\theta$  varies, [3]

(b) solve the equation

$$\sin(12\alpha + 30^{\circ}) + \cos(12\alpha + 60^{\circ}) + 4\sin(6\alpha + 30^{\circ}) + 4\cos(6\alpha + 60^{\circ}) = 1$$
 for  $0^{\circ} < \alpha < 60^{\circ}$ . [4]

# Q6, (Jan 2006, Q9)

(i) By first writing  $\sin 3\theta$  as  $\sin(2\theta + \theta)$ , show that

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta. \tag{4}$$

(ii) Determine the greatest possible value of

$$9\sin(\frac{10}{3}\alpha) - 12\sin^3(\frac{10}{3}\alpha),$$

and find the smallest positive value of  $\alpha$  (in degrees) for which that greatest value occurs. [3]

### Solving Equations Using Compound Angle Formulae Exam Questions (From OCR 4754A)

### Q1, (Jun 2005, Q5)

Solve the equation 
$$2\cos 2x = 1 + \cos x$$
, for  $0^{\circ} \le x < 360^{\circ}$ . [7]

### Q2, (Jan 2006, Q4)

Solve the equation 
$$2 \sin 2\theta + \cos 2\theta = 1$$
, for  $0^{\circ} \le \theta < 360^{\circ}$ . [6]

### Q3, (Jun 2006, Q3)

Given that 
$$\sin(\theta + \alpha) = 2\sin\theta$$
, show that  $\tan\theta = \frac{\sin\alpha}{2 - \cos\alpha}$ .

Hence solve the equation 
$$\sin (\theta + 40^{\circ}) = 2\sin \theta$$
, for  $0^{\circ} \le \theta \le 360^{\circ}$ . [7]

### Q4, (Jan 2007, Q3)

- (i) Use the formula for  $\sin(\theta + \phi)$ , with  $\theta = 45^{\circ}$  and  $\phi = 60^{\circ}$ , to show that  $\sin 105^{\circ} = \frac{\sqrt{3} + 1}{2\sqrt{2}}$ .
- (ii) In triangle ABC, angle BAC =  $45^{\circ}$ , angle ACB =  $30^{\circ}$  and AB = 1 unit (see Fig. 3).



Fig. 3

Using the sine rule, together with the result in part (i), show that  $AC = \frac{\sqrt{3} + 1}{\sqrt{2}}$ . [3]

### Q5, (Jan 2008, Q4)

The angle  $\theta$  satisfies the equation  $\sin(\theta + 45^{\circ}) = \cos \theta$ .

- (i) Using the exact values of  $\sin 45^{\circ}$  and  $\cos 45^{\circ}$ , show that  $\tan \theta = \sqrt{2} 1$ . [5]
- (ii) Find the values of  $\theta$  for  $0^{\circ} < \theta < 360^{\circ}$ . [2]

[6]

#### Q6, (Jun 2012, Q5)

Given the equation  $\sin(x + 45^\circ) = 2\cos x$ , show that  $\sin x + \cos x = 2\sqrt{2}\cos x$ .

Hence solve, correct to 2 decimal places, the equation for  $0^{\circ} \le x \le 360^{\circ}$ .

### Q7, (Jun 2013, Q3)

Using appropriate right-angled triangles, show that  $\tan 45^\circ = 1$  and  $\tan 30^\circ = \frac{1}{\sqrt{3}}$ .

Hence show that  $\tan 75^\circ = 2 + \sqrt{3}$ . [7]

### Q8, (Jun 2015, Q2)

Express  $6\cos 2\theta + \sin \theta$  in terms of  $\sin \theta$ .

Hence solve the equation  $6\cos 2\theta + \sin \theta = 0$ , for  $0^{\circ} \le \theta \le 360^{\circ}$ .

### **Small Angle Approximations Exam Questions**

### Q1, (OCR H240/03, Sample Question Paper, Q4)

Show that, for a small angle  $\theta$ , where  $\theta$  is in radians,

$$1 + \cos\theta - 3\cos^2\theta \approx -1 + \frac{5}{2}\theta^2$$

[4]

[7]

## Q2, (OCR H240/03, Practice Paper Set 1, Q3)



The diagram shows triangle ABC, in which angle  $A = \theta$  radians, angle  $B = \frac{3}{4}\pi$  radians and AB = 1 unit.

(i) Use the sine rule to show that 
$$AC = \frac{1}{\cos \theta - \sin \theta}$$
. [3]

(ii) Given that  $\theta$  is a small angle, use the result in part (i) to show that

$$AC \approx 1 + p\theta + q\theta^2$$
,

where p and q are constants to be determined.

[4]

## Q3, (OCR H240/02, Practice Paper Set 3, Q3)

Use small angle approximations to estimate the solution of the equation  $\frac{\cos\frac{1}{2}\theta}{1+\sin\theta} = 0.825$ , if  $\theta$  is small enough to neglect terms in  $\theta^3$  or above. [4]