Q1, (Jan 2009, Q9)

(i) By first expanding $\cos (2 \theta+\theta)$, prove that

$$
\begin{equation*}
\cos 3 \theta \equiv 4 \cos ^{3} \theta-3 \cos \theta \tag{4}
\end{equation*}
$$

(ii) Hence prove that

$$
\begin{equation*}
\cos 6 \theta \equiv 32 \cos ^{6} \theta-48 \cos ^{4} \theta+18 \cos ^{2} \theta-1 . \tag{3}
\end{equation*}
$$

(iii) Show that the only solutions of the equation

$$
1+\cos 6 \theta=18 \cos ^{2} \theta
$$

are odd multiples of 90°.

Q2, (Jan 2010, Q9)

The value of $\tan 10^{\circ}$ is denoted by p. Find, in terms of p, the value of
(i) $\tan 55^{\circ}$,
(ii) $\tan 5^{\circ}$,
(iii) $\tan \theta$, where θ satisfies the equation $3 \sin \left(\theta+10^{\circ}\right)=7 \cos \left(\theta-10^{\circ}\right)$.

Q3, (Jun 2011, Q9)

(i) Prove that $\frac{\sin (\theta-\alpha)+3 \sin \theta+\sin (\theta+\alpha)}{\cos (\theta-\alpha)+3 \cos \theta+\cos (\theta+\alpha)} \equiv \tan \theta$ for all values of α.
(ii) Find the exact value of $\frac{4 \sin 149^{\circ}+12 \sin 150^{\circ}+4 \sin 151^{\circ}}{3 \cos 149^{\circ}+9 \cos 150^{\circ}+3 \cos 151^{\circ}}$.
(iii) It is given that k is a positive constant. Solve, for $0^{\circ}<\theta<60^{\circ}$ and in terms of k, the equation

$$
\begin{equation*}
\frac{\sin \left(6 \theta-15^{\circ}\right)+3 \sin 6 \theta+\sin \left(6 \theta+15^{\circ}\right)}{\cos \left(6 \theta-15^{\circ}\right)+3 \cos 6 \theta+\cos \left(6 \theta+15^{\circ}\right)}=k \tag{4}
\end{equation*}
$$

Q4, (Jan 2013, Q9)

(i) Prove that

$$
\begin{equation*}
\cos ^{2}\left(\theta+45^{\circ}\right)-\frac{1}{2}(\cos 2 \theta-\sin 2 \theta) \equiv \sin ^{2} \theta \tag{4}
\end{equation*}
$$

(ii) Hence solve the equation

$$
\begin{equation*}
6 \cos ^{2}\left(\frac{1}{2} \theta+45^{\circ}\right)-3(\cos \theta-\sin \theta)=2 \tag{3}
\end{equation*}
$$

for $-90^{\circ}<\theta<90^{\circ}$.
(iii) It is given that there are two values of θ, where $-90^{\circ}<\theta<90^{\circ}$, satisfying the equation

$$
6 \cos ^{2}\left(\frac{1}{3} \theta+45^{\circ}\right)-3\left(\cos \frac{2}{3} \theta-\sin \frac{2}{3} \theta\right)=k
$$

where k is a constant. Find the set of possible values of k.

Q5, (Jun 2015, Q9)

It is given that $\mathrm{f}(\theta)=\sin \left(\theta+30^{\circ}\right)+\cos \left(\theta+60^{\circ}\right)$.
(i) Show that $\mathrm{f}(\theta)=\cos \theta$. Hence show that

$$
\begin{equation*}
\mathrm{f}(4 \theta)+4 \mathrm{f}(2 \theta) \equiv 8 \cos ^{4} \theta-3 . \tag{6}
\end{equation*}
$$

(ii) Hence
(a) determine the greatest and least values of $\frac{1}{\mathrm{f}(4 \theta)+4 \mathrm{f}(2 \theta)+7}$ as θ varies,
(b) solve the equation

$$
\begin{aligned}
& \sin \left(12 \alpha+30^{\circ}\right)+\cos \left(12 \alpha+60^{\circ}\right)+4 \sin \left(6 \alpha+30^{\circ}\right)+4 \cos \left(6 \alpha+60^{\circ}\right)=1 \\
& \text { for } 0^{\circ}<\alpha<60^{\circ}
\end{aligned}
$$

Q6, (Jan 2006, Q9)

(i) By first writing $\sin 3 \theta$ as $\sin (2 \theta+\theta)$, show that

$$
\begin{equation*}
\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta \tag{4}
\end{equation*}
$$

(ii) Determine the greatest possible value of

$$
9 \sin \left(\frac{10}{3} \alpha\right)-12 \sin ^{3}\left(\frac{10}{3} \alpha\right)
$$

and find the smallest positive value of α (in degrees) for which that greatest value occurs.

Q1, (Jun 2005, Q5)
Solve the equation $2 \cos 2 x=1+\cos x$, for $0^{\circ} \leqslant x<360^{\circ}$.

Q2, (Jan 2006, Q4)
Solve the equation $2 \sin 2 \theta+\cos 2 \theta=1$, for $0^{\circ} \leqslant \theta<360^{\circ}$.

Q3, (Jun 2006, Q3)
Given that $\sin (\theta+\alpha)=2 \sin \theta$, show that $\tan \theta=\frac{\sin \alpha}{2-\cos \alpha}$.

Hence solve the equation $\sin \left(\theta+40^{\circ}\right)=2 \sin \theta$, for $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$.
Q4, (Jan 2007, Q3)
(i) Use the formula for $\sin (\theta+\phi)$, with $\theta=45^{\circ}$ and $\phi=60^{\circ}$, to show that $\sin 105^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$.
(ii) In triangle ABC , angle $\mathrm{BAC}=45^{\circ}$, angle $\mathrm{ACB}=30^{\circ}$ and $\mathrm{AB}=1$ unit (see Fig. 3).

Fig. 3
Using the sine rule, together with the result in part (i), show that $\mathrm{AC}=\frac{\sqrt{3}+1}{\sqrt{2}}$.

Q5, (Jan 2008, Q4)

The angle θ satisfies the equation $\sin \left(\theta+45^{\circ}\right)=\cos \theta$.
(i) Using the exact values of $\sin 45^{\circ}$ and $\cos 45^{\circ}$, show that $\tan \theta=\sqrt{2}-1$.
(ii) Find the values of θ for $0^{\circ}<\theta<360^{\circ}$.

Q6, (Jun 2012, Q5)
Given the equation $\sin \left(x+45^{\circ}\right)=2 \cos x$, show that $\sin x+\cos x=2 \sqrt{2} \cos x$.
Hence solve, correct to 2 decimal places, the equation for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

Q7, (Jun 2013, Q3)

Using appropriate right-angled triangles, show that $\tan 45^{\circ}=1$ and $\tan 30^{\circ}=\frac{1}{\sqrt{3}}$.
Hence show that $\tan 75^{\circ}=2+\sqrt{3}$.

Q8, (Jun 2015, Q2)

Express $6 \cos 2 \theta+\sin \theta$ in terms of $\sin \theta$.
Hence solve the equation $6 \cos 2 \theta+\sin \theta=0$, for $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$.

Small Angle Approximations Exam Questions

Q1, (OCR H240/03, Sample Question Paper, Q4)

Show that, for a small angle θ, where θ is in radians,

$$
1+\cos \theta-3 \cos ^{2} \theta \approx-1+\frac{5}{2} \theta^{2}
$$

Q2, (OCR H240/03, Practice Paper Set 1, Q3)

The diagram shows triangle $A B C$, in which angle $A=\theta$ radians, angle $B=\frac{3}{4} \pi$ radians and $A B=1$ unit.
(i) Use the sine rule to show that $A C=\frac{1}{\cos \theta-\sin \theta}$.
(ii) Given that θ is a small angle, use the result in part (i) to show that

$$
A C \approx 1+p \theta+q \theta^{2}
$$

where p and q are constants to be determined.

Q3, (OCR H240/02, Practice Paper Set 3, Q3)

Use small angle approximations to estimate the solution of the equation $\frac{\cos \frac{1}{2} \theta}{1+\sin \theta}=0.825$, if θ is small
enough to neglect terms in θ^{3} or above.

