GCSE Physics Triple Science Magnetism Recap

"Believe me, this whole animal magnetism thing isn't all it's cracked up to be."

Name: _____

Date: _____

Revision – Exam style questions

Q13.

The left-hand rule can be used to identify the direction of the force acting on a current-carrying conductor in a magnetic field.

- (a) Use words from the box to label **Figure 1**.

(b) Figure 2 shows an electric motor.

(i) Draw an arrow on **Figure 2** to show the direction of the force acting on the wire **AB**.

(1)

(3)

(Total 4 marks)

Q14.

(a) Complete the description of the device shown below by drawing a ring around the correct line in each box.

(i) The device is being used as

an electric motor. a generator. a transformer.

(1)

(ii) The coil needs a flick to get started. Then one side of the coil is pushed by the

cellcoiland the other side is pulled, so that the coil spins.force

(1)

- (b) Suggest two changes to the device, each one of which would make the coil spin faster.

(2)

(c) Suggest **two** changes to the device, each one of which would make the coil spin in the opposite direction.

1	
2	
	(2)
	(Total 6 marks)

Q15.

The circle in **Figure 1** represents a straight wire carrying a current. The cross shows that the current is into the plane of the paper.

\otimes

- (a) Complete **Figure 1** to show the magnetic field pattern around the wire.
- (b) The magnetic flux density 10 cm from the wire is 4 microtesla.

Which of the following is the same as 4 microtesla?

Tick **one** box.

(1)

(2)

(c) **Figure 2** shows a simple electric motor.

When there is a current in the coil, the coil rotates continuously.

Explain why.

(4) (Total 7 marks)

Q16.

The figure below shows a coil and a magnet. An ammeter is connected to the coil.

The ammeter has a centre zero scale, so that values of current going in either direction through the coil can be measured.

(a) A teacher moves the magnet slowly towards the coil.

Explain why there is a reading on the ammeter.

(b) The table below shows some other actions taken by the teacher.

Complete the table to show the effect of each action on the ammeter reading.

Action taken by teacher	What happens to the ammeter reading?
Holds the magnet stationary and moves the coil slowly towards the magnet	
Holds the magnet stationary within the coil	
Moves the magnet quickly towards the coil	
Reverses the magnet and moves it slowly towards the coil	

Q17.

Figure 1 shows the construction of a simple transformer.

(a) Why is iron a suitable material for the core of a transformer?

Tick one box.	
It is a metal.	
It will not get hot.	
It is easily magnetised.	
It is an electrical conductor.	

(1)

(b) A student makes three simple transformers, **J**, **K** and **L**.

Figure 2 shows how the potential difference across the secondary coil of each transformer varies as the potential difference across the primary coil of each transformer is changed.

ach of the transformers has 50 turns on the primary coil.	
alculate the number of turns on the secondary coil of transformer L.	
se the correct equation from the Physics Equations Sheet.	
Number of turns on the secondary coil = _	
Number of turns on the secondary $coll = _$	
	(Total