GCSE Physics

Triple Science

Magnetism Recap

"Believe me, this whole animal magnetism thing isn't all it's cracked up to be."
\qquad

Revision - Exam style questions

Q13.
The left-hand rule can be used to identify the direction of the force acting on a current-carrying conductor in a magnetic field.
(a) Use words from the box to label Figure 1.

current	field	force	potential difference

Figure 1

Direction of \qquad
(b) Figure 2 shows an electric motor.

Figure 2

(i) Draw an arrow on Figure 2 to show the direction of the force acting on the wire $\mathbf{A B}$.
(a) Complete the description of the device shown below by drawing a ring around the correct line in each box.

(i) The device is being used as \quad| an electric motor. |
| :--- |
| a generator. |
| a transformer. |

(ii) The coil needs a flick to get started. Then one side of the coil is pushed by the

cell
coil
force

(b) Suggest two changes to the device, each one of which would make the coil spin faster.

1. \qquad
\qquad
2. \qquad
\qquad
(c) Suggest two changes to the device, each one of which would make the coil spin in the opposite direction.
3. \qquad
\qquad
4. \qquad
\qquad

Q15.

The circle in Figure 1 represents a straight wire carrying a current. The cross shows that the current is into the plane of the paper.

Figure 1
(a) Complete Figure 1 to show the magnetic field pattern around the wire.
(b) The magnetic flux density 10 cm from the wire is 4 microtesla.

Which of the following is the same as 4 microtesla?
Tick one box.
$4 \times 10^{-2} T$

$4 \times 10^{-3} \mathrm{~T}$

$4 \times 10^{-6} \mathrm{~T}$

$4 \times 10^{-9} \mathrm{~T}$

(c) Figure 2 shows a simple electric motor.

Figure 2

When there is a current in the coil, the coil rotates continuously.
Explain why.
\qquad

Q16.
The figure below shows a coil and a magnet. An ammeter is connected to the coil.

The ammeter has a centre zero scale, so that values of current going in either direction through the coil can be measured.
(a) A teacher moves the magnet slowly towards the coil.

Explain why there is a reading on the ammeter.
\qquad
(b) The table below shows some other actions taken by the teacher.

Complete the table to show the effect of each action on the ammeter reading.

Action taken by teacher	What happens to the ammeter reading?
Holds the magnet stationary and moves the coil slowly towards the magnet	
Holds the magnet stationary within the coil	
Moves the magnet quickly towards the coil	
Reverses the magnet and moves it slowly towards the coil	

Q17.
Figure 1 shows the construction of a simple transformer.
Figure 1

(a) Why is iron a suitable material for the core of a transformer?

Tick one box.

It is a metal. \square

It will not get hot.

It is easily magnetised.

It is an electrical conductor.

(b) A student makes three simple transformers, J, K and \mathbf{L}.

Figure 2 shows how the potential difference across the secondary coil of each transformer varies as the potential difference across the primary coil of each transformer is changed.

Figure 2

Page 8 of 9

How can you tell that transformer \mathbf{J} is a step-down transformer?
\qquad
\qquad
(c) Each of the transformers has 50 turns on the primary coil.

Calculate the number of turns on the secondary coil of transformer \mathbf{L}.
Use the correct equation from the Physics Equations Sheet.
\qquad
\qquad
\qquad
Number of turns on the secondary coil $=$
(Total 5 marks)

